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The Learning ORDER project

▶ Learning for Operationalizing Data into
Energy Management

▶ with A. Botterud and D. Mallapragada

▶ Started in Mar 2022, spans two years

▶ Three main research thrusts:
▶ Marketplace for energy datasets
▶ Differential privacy for energy datasets
▶ Performance-oriented learning for control
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Convex optimization solves real-world problems

min
x

c⊤x

s.t. b − Ax ∈ K

▶ Conic optimization program

▶ Optimization dataset D = {c, b,A}
▶ Optimal solution x⋆ is dataset-specific

▶ Often, x⋆(D) ̸=x⋆(D′) for different datasets D and D′

j Healthcare

ê Credit scoring

� Energy forecasting

� Logistics

@ eCommerce

� Distribution grids
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Formalization of privacy

Privacy definition

The right of data owner to be protected from an unauthorized disclosure of the private
information when his/her data is utilized.

R
DDD′ D′′ ▶ Optimization as a mapping x⋆ : D 7→ X

▶ Privacy adversary mapping A : X 7→ D

▶ Privacy goal is to mislead the adversary

This is achieved with ε−differential privacy:

▶ Let x̃⋆ be a random counterpart of x⋆

▶ Any dataset pair D,D′ ∈ D is adjacent if

∥D −D′∥ ⩽ α

▶ For two adjacent datasets D and D′:

x⋆(D) ̸= x⋆(D′) but x̃⋆(D) ≈ x̃⋆(D′)

x
⋆
(D

)

x
⋆
(D

′ )

x̂

Pr[x̃⋆(D′)=x̂ ]
Pr[x̃⋆(D )=x̂ ] ⩽ eε
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Key principle of data privacy: perturb data but preserve its value

The Starry Night by Vincent Van Gogh

1889 (MuseumofModernArt, NYC) 1888 (Musée d’Orsay’s, Paris)

The value of each painting is well over $100 million
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Problem statement

▶ Perturbation of the optimal solution x⋆

often fails to ensure feasibility

▶ We seek solution x whose perturbation is
▶ ε−differentially private
▶ Feasible with a high probability
▶ Cost-optimal w.r.t. some risk measure

x

co
st

fu
n
ct
io
n

p
d
f

○

x⋆

X
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Differential privacy meets stochastic programming

Deterministic program
Business as usual

min
x

c⊤x

s.t. b − Ax ∈ K

Stochastic program
Perturbation, risk-min. s.t. chance constraint

min
x̃(ξ)

F [c⊤x̃(ξ)]

s.t. P[b − Ax̃(ξ) ∈ K] ⩾ 1− η

D
D

D′
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Differential privacy meets stochastic programming

Deterministic program
Business as usual

min
x

c⊤x

s.t. b − Ax ∈ K

Stochastic program
Perturbation, risk-min. s.t. chance constraint

min
x,X∈X

F [c⊤(x + Xξ)]

s.t. P[b − A(x + Xξ) ∈ K] ⩾ 1− η

D
D

D′

We achieve such a randomization using linear decision rules:

x̃(ξ) = x + Xξ
▶ x−mean value, data dependent x = x(D)

▶ Xξ−recourse, must be made data independent
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min
x,X∈X

F [c⊤(x + Xξ)]

s.t. P[b − A(x + Xξ) ∈ K] ⩾ 1− η

D
D

D′

Our key result is to prove ε−differential privacy of x̃(D), i.e.,

▶ Any pair of α−adjacent datasets D′,D ∈ D

▶ Perturbation ξ ∼ Lap(0, ∆α
ε
)

▶ Worst-case sensitivity of x⋆ to α−adjacent datasets

Pr[x(D′) + X (D′)ξ = x̂ ]

Pr[x(D ) + X (D )ξ = x̂ ]
⩽ eε
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Two applications of private convex optimization:

▶ Private distribution grid control

▶ Private monotone wind power curve fitting



Private distribution optimal power flow (OPF)

▶ Distribution grid topology:

i − 1 ui

i + 1

i + 2

† = {p, q}flow

f †i

lo
a
d

d†
i

g†
i

g
en

▶ Distribution AC optimal power flow:
▶ Minimize total dispatch cost

▶ Subject to OPF equations:

f †
i = d†

i − g†
i +

∑
ℓ∈Di

f †ℓ , ∀ℓ ∈ L

ui = u0 − 2
∑

ℓ∈Ri

(f pℓ rℓ + f qℓ xℓ), ∀i ∈ N

and flow, generation, and voltage limits
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Private monotone wind power curve fitting – Motivation

Wind farm locations in N. Europe. Wind Europe (c)

S&TR (April–May 2014)

▶ Wind farms benefit from coll. learning

▶ How to release the model while
privatizing individual farm data?
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Private monotone wind power curve fitting – Example

min
β

E

[
n∑

i=1

(
yi − φ(xi )

⊤β︸ ︷︷ ︸
business as usual

−φ(xi )
⊤ξ︸ ︷︷ ︸

perturbation

)2]

s.t. P [C(β + ξ) ⩾ 0] ⩾ 1− η,

▶ Dataset {(y1, x1), . . . , (yn, xn)}
▶ Minimize regression loss function

▶ By finding optimal weights β⋆ ...

▶ ... of basis functions in vector φ(x)

▶ Deterministic curve fitting results in the loss of 1,513.4

▶ We want to make datasets indistinguishable in model weights β⋆

▶ The direct weight perturbation, i.e., β⋆ + ξ:
▶ Does not effect the goodness of fit, loss
▶ Infeasible with a high probability of 13.4%

▶ Perturbation of the optimal chance-constrained weights:
▶ Reduces the empirical infeasibility to 4.0% (η = 5%)
▶ At the expense of an increasing loss of 2,003.2 (+32%)
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Thank you for your attention!

Contributions:

1. Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J. and Pinson, P.
Differentially private convex optimization with feasibility guarantees
Priprint, arXiv preprint arXiv:2006.12338.

2. Dvorkin, V., Fioretto, F., Van Hentenryck, P., Pinson, P. and Kazempour J.
Differentially private optimal power flow for distribution grids
IEEE Transactions on Power Systems, 2021
/ Best 2019–2021 Paper Award

3. Dvorkin, V., Van Hentenryck, P., Kazempour, J. and Pinson P.
Differentially private distributed optimal power flow
2020 Conference on Decision and Control

Let’s stay in touch:

� DvorkinVladimir ï Vladimir-Dvorkin @ dvorkin@mit.edu
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