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Challenges of the long-term power system planning

» Long-term power system planning is subject to planning uncertainty
» Offshore wind CAPEX from the NREL annual technology baseline:

—&— optimistic —@=— base —@— pessimistic

—26%

—52%
‘ ‘ ‘ ‘ ‘ ‘ : —64%
2020 2025 2030 2035 2040 2045 2050
investment stage

> 1/12



Challenges of the long-term power system planning

» Long-term power system planning is subject to planning uncertainty
» Offshore wind CAPEX from the NREL annual technology baseline:

—&— optimistic —@=— base —@— pessimistic

—26%

—52%
1 —64%

2020 2025 2030 2035 2040 2045 2050
investment stage

> 1/12



Challenges of the long-term power system planning

» Long-term power system planning is subject to planning uncertainty
» Offshore wind CAPEX from the NREL annual technology baseline:

—e— optimistic —e— base —@— pessimistic non-Gaussian,
multi-stage uncertainty

6% 2025

—52%
1 —64%

2020 2025 2030 2035 2040 2045 2050
investment stage

capex

> 1/12



Challenges of the long-term power system planning

» Long-term power system planning is subject to planning uncertainty
» Offshore wind CAPEX from the NREL annual technology baseline:

—e— optimistic —e— base —@— pessimistic non-Gaussian,
multi-stage uncertainty

6% 2025

—52% 2050
A —64%

2020 2025 2030 2035 2040 2045 2050
investment stage

capex

> 1/12



Challenges of the long-term power system planning

» Long-term power system planning is subject to planning uncertainty
» Offshore wind CAPEX from the NREL annual technology baseline:

—e— optimistic —e— base —@— pessimistic non-Gaussian,
multi-stage uncertainty

6% 2025

—52% 2050
A —64%

2020 2025 2030 2035 2040 2045 2050
investment stage

capex

» Planning uncertainty accumulates throughout the investment horizon:

2020 TN 2025 & N\ & T\ 2050

Y1 va2(&2) Ve(€2s--3&) yr(&,. .. &,
- €7)
> Scenario # grows exponentially — optimizing dynamic investment decisions (y1,...,Y71)

becomes intractable even under decomposition (SDDP, progressive hedging. etc.)
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Multi-stage linear decision rule (LDR) approximation

min [E[z;(at(sf)%(sf)+a(s*)%(£f))]
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43 Jt
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sto W (ye(€h) = Z(€Y),
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g™ (v.(€9) <o,
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> Linear decision rule approximation [KWG11]:
o SAA ® LDR
Ve(€") = Y€t ye(€F) = Veg!

with matrices Y+ and Y; to be optimized

» How good is the LDR approximation? This work:
1. Providing feasibility guarantees
2. Optimizing sensitivity to uncertainty
3. Providing sub-optimality bounds
4. Learning worst-case scenarios
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LDR approximation: Feasibility guarantees

» Power balance (equality constraint) at time stage t and operating hour h:

nT(&,ﬁ—kfoLtgf) =0 <= 1" (Yu—kfol) =0

gen load |£t| equations

1 equation
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» Power balance (equality constraint) at time stage t and operating hour h:
1T (Y€ — ko Leg') =0 <= 17 (Yiy— kfoLe) =0
~ =

gen load

|£t| equations

1 equation

> Limits on investment decision (inequality constraint) in gen. unit i at time stage t:

Pft[ LY et <*'“3X] >1—¢

ﬂ gtNP(Mt,FtFtT) €
scenario-free dist. robust reformulation [XA17] :
vz Ff[Zt],T L(gmex _yminy oy, ) N
—min —max
|[vt],u — A - )| < 8+ Y Y
(ymax —YMM) >4 >0, 6, >0
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LDR approximation: Investment (in)sensitivity to uncertainty

min E [2;1 (at(gf)TVtgf + & ()T Yt.ft):| dynamic investments
Yt oYt

—@— det —@— LDR

sto  API(Yeet) = 7i(€h),
g (et {Y-ET}1y) <0,
ginV(VtEt) < 0’

stage 1 stage 2 stage 3
€ P, Vt=1,...,T & & &

/" LDR ® det

Y3l

» Linear decision rules evaluate the sensitivity
of investments to uncertainty
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LDR approximation: Investment (in)sensitivity to uncertainty

min E [Z;l (at(ft)T7t§t +&(eh)T tht):|

+aVar{Z;1 Ytﬁt}
sto h!(Yig') = Te(€h),
geng(ytgt’ {VTET 5—:1) <0,
ginV(VtEt) < 0’
&~ Pg, Vt=1,...,T

1757

>

dynamic investments

—@— det —@— LDR —@— det eq

stage 1 stage 2 stage 3

Linear decision rules evaluate the sensitivity
of investments to uncertainty

The sensitivity can be optimized to meet a
trade-off between the expected cost and
investment variance (up to penalty «)
Deterministic equivalent - insensitive to
uncertainty but robust to its realizations
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LDR approximation: Sub-optimality bound

o SAA ® LDR

° » LDR approximation can be sub-optimal

> $59 billion: investment into renewable
energy in US in 2019

» Even 1% sub-optimality gap results in the
annual loss of $590 mil.

» Duality theory to bound sub-optimality
[KWG11]
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LDR approximation: Sub-optimality bound

o SAA ® LDR

° » LDR approximation can be sub-optimal

> $59 billion: investment into renewable
energy in US in 2019

» Even 1% sub-optimality gap results in the
annual loss of $590 mil.

» Duality theory to bound sub-optimality
[KWG11]

Primal problem

Dual problem
max E[B()"A©)]
sto ATA®E) < &)

. efeT—
min E[() y~(€)]
sto Ay(¢) = b(&)

strong duality

Jk(ﬁ) =N

>

Primal approximation

min 2Ty
i E[e(¢)TVe]

# 0 duality gap

Dual approximation

sto AYE > b(€)

sub-optimality bound

max E [B(g)T/\g]

sto ATAE < &)
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LDR approximation: Learning worst-case scenarios

o SAA ® LDR

» Duality yields a conservative bound
» What is a likelihood of LDR sub-optimality?

» With small problem instances, we learn the
worst-case sub-optimality scenarios
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LDR approximation: Learning worst-case scenarios

o SAA ® LDR

Bilevel optimization-based learning

max TYe-—T(yr+y
ol e
sto <€ i3
Y2 € argmin c"(7] +72)
st A7 +72) > ()

>

v

Duality yields a conservative bound
What is a likelihood of LDR sub-optimality?

With small problem instances, we learn the
worst-case sub-optimality scenarios

Acts on the support of P¢
Recast as a mixed-integer linear program
Only right-hand side uncertainty E({)
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LDR approximation: Learning worst-case scenarios

o SAA ® LDR

v

Duality yields a conservative bound
What is a likelihood of LDR sub-optimality?

vy

With small problem instances, we learn the
worst-case sub-optimality scenarios

Sample-based learning

max 7y
¥

sto || &(&)TY e —&(&) T (7 + 75
—_—— —,—,———

LDR SAA
Vs=1,...,S

v

Acts on samples from P¢ [MGL14]

v

Recast as a linear program
Uncertainty of &(&) and b(¢)

| <~

v

where S is the number of samples from
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lllustrative example: System and

3-bus power system
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CCGT  $4500/kW  $35.9/MWh

» Zero initial capacity
» Wind — CCGT competition
» 3-stage investment horizon

» 24 representing operating hours
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lllustrative example: Deterministic vs. stochastic solutions

3-bus power system
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lllustrative example: Optimality loss

Second-stage uncertainty

oy

2

» Two-stage uncertainty case 3

>

» Expected cost under three approximations: %

LDR-primal SAA LDR-dual %’
$412,786  $412,114  $410,658 & 0 1 )

» Duality-based sub-optimality bound: 1% random variable &

» Optimization-based learning is sensitive to s Lo
P g . Distribution of optimality loss
support bounds = sample-based learning
» The worst-case sup-optimality is in the left
tail of uncertainty distribution:
» maximal wind capex
> maximal CCGT opex
» minimal demand growth

probability density
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Electric Reliability Council of Texas

>

rate of change

> 13 zones, 20 lines, 47 units [BMBK20]
> NREL ATB technology baseline
» 5-stage planning horizon

» 24 operating conditions

Investment cost
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investment stage
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Electric Reliability Council of Texas
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Electric Reliability Council of Texas
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Conclusions

» LDRs approximate the solution of the multi-stage investment problems

2020 \2025 TN \2050

Y1 Va(&2) Vel s&) yr(&e,... &,
-5 €T)

time

» LDRs ensure the feasibility of investment plan under uncertainty
» Sub-optimality of LDRs depends on the magnitude of uncertainty ...

> ... yet the worst-case sub-optimality is at the boundaries of uncertainty set

>
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