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Challenges in long-term power system planning

» Planning power systems for decades ahead involves uncertainties

» Static versus Dynamic power system planning

P Static planning targets a specific year in future (answers “What" question)

» Dynamic planning allocates investments over time (answers “How" question)

static investment

now stage 2 Ne n
\_/\_/\_/ tlme

dynamic investments

» Dynamic planning takes advantage of recourse as uncertainty gradually realizes

» Dynamic planning wins efficiency! but requires advanced decomposition, e.g., SDDP,
Progressive Hedging, etc.

1Beste Basciftci, Shabbir Ahmed, and Nagi Gebraeel. “Adaptive two-stage stochastic programming with an application to
capacity expansion planning”. In: arXiv preprint arXiv:1906.03513 (2019).
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» Dynamic planning takes advantage of recourse as uncertainty gradually realizes

» Dynamic planning wins efficiency! but requires advanced decomposition, e.g., SDDP,
Progressive Hedging, etc.

Can we solve multi-stage investment problems without resorting to decomposition?

1Beste Basciftci, Shabbir Ahmed, and Nagi Gebraeel. “Adaptive two-stage stochastic programming with an application to
capacity expansion planning”. In: arXiv preprint arXiv:1906.03513 (2019).
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Generation planning problem
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Addressing Uncertainty using Linear Decision Rules

Investment cost dynamic
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2Stanley J Garstka and Roger J-B Wets. “On decision rules in stochastic programming”. In: Mathematical Programming 7.1

(1974), pp. 117-143.
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Addressing Uncertainty using Linear Decision Rules

Investment cost dynamic Scenario-based optimization requires:
a1 » Many scenarios to represent uncertainty
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(1974), pp. 117-143.
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» Stochastic cost dynamic from above:
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» Linear decision rule at stage t:
V(€)= V£,

where matrix Y is an opt. variable

Scenario-based optimization requires:

» Many scenarios to represent uncertainty

> Significant computational effort
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Addressing Uncertainty using Linear Decision Rules
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Performance Guarantees of LDRs: Feasibility

Chance-constrained optimization of investment (Y :£t) and operating (P:£%) linear decision rules:

-
min  Ep, [Z(tht)ﬂ/tgf + (Cett) T Pegt Investment + operating costs

Y:,Pt

=1
sto. P [Pre" — L&' € OPF eq.] > 1 — eqpf, Vi OPF equations
Pt [0 < Pt < 25:177.57] >1— egen, Vt Generation limits
Pt [0 <Yt < ?max] >1—¢gjny, Vt Investment limits

» Includes uncertainty of investment (Q:£f) and operating costs (C:£), and system load (L:£%)
> Guarantees feasibility up to prescribed parameters cqpf, £gen and €iny
> Requires uncertainty movements (mean & covariance)
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Performance Guarantees of LDRs: Minimal Variability

Variance-aware optimization of linear decision rules:

-
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> Additionally penalizes the variability of investment decisions (at the expense of exp. costs)

Variability-agnostic investment rules Variability-aware investment rules
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Performance Guarantees of LDRs: Sub-optimality bound

» Restricting decisions to linear functions
incurs optimality loss w.r.t. ideal
stochastic solution

» $59 billion: investment into renewable
energy in US in 2019

» Even 1% sub-optimality gap results in
the annual loss of $590 mil.

>
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Duality-inspired global sub-optimality gap?

» Step 1: Solve primal stochastic
program in LDRs (primal gap) <\
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3Daniel Kuhn, Wolfram Wiesemann, and Angelos Georghiou.
optimization”. In: Mathematical Programming 130.1 (2011), pp. 177-209.
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“Primal and dual linear decision rules in stochastic and robust
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Numerical Demonstration: Electric Reliability Council of Texas

>

» 13 zones, 20 lines, 47 units
> NREL ATB technology baseline
» 5-stage planning horizon

» 24 operating conditions
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Conclusions

» Long-term power system planning is challenged by uncertainty

» Linear decision rules approximate optimal multi-stage planning under uncertainty
P Scalability (scenario-free) > Decision variability control

P Feasibility guarantees » Sub-optimality bounds

» How good is this approximation? ERCOT system:
» Good when the system operator has a clear understanding of future trends (sub-optimality =~ 1%)
» Bad when the system has no idea where the system is going (sub-optimality > 12%)
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