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Challenges in long-term power system planning

I Planning power systems for decades ahead involves uncertainties

I Static versus Dynamic power system planning

I Static planning targets a specific year in future (answers “What” question)

I Dynamic planning allocates investments over time (answers “How” question)

static investment

dynamic investments

time
now stage 2 . . . stage n

I Dynamic planning takes advantage of recourse as uncertainty gradually realizes

I Dynamic planning wins efficiency1 but requires advanced decomposition, e.g., SDDP,
Progressive Hedging, etc.

Can we solve multi-stage investment problems without resorting to decomposition?

1Beste Basciftci, Shabbir Ahmed, and Nagi Gebraeel. “Adaptive two-stage stochastic programming with an application to
capacity expansion planning”. In: arXiv preprint arXiv:1906.03513 (2019).
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Generation planning problem

min
y,y,p

∑T
t=1

(
q>t y t +

∑H
h=1 ce(pth) + cc(yth)

)
Total investment and operating costs

s.to.
1>
(
pth + yth − k`h ◦ `t

)
= 0∣∣∣F (pth + yth − k`

h ◦ `t
)∣∣∣ 6 f

Optimal power flow constraints

0 6 pth 6 ke
h ◦ p

0 6 yth 6 kc
h ◦
∑t
τ=1 yτ

Generation limits

pth − pt(h−1) 6 r+

e ◦ p

pth − pt(h−1) > −r9e ◦ p

yth − yt(h−1) 6 r+

c ◦
∑t
τ=1 yτ

yth − yt(h−1) > −r9c ◦
∑t
τ=1 yτ

Ramping limits

∀t = 1, . . . ,T , h = 1, . . . ,H T inv. stages, H operating conditions
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Addressing Uncertainty using Linear Decision Rules

Investment cost dynamic

mean

scenario

sample

sc. tree

−20%

−15%

q1

q2

q3

time
stage 1 stage 2 stage 3

Scenario-based optimization requires:

I Many scenarios to represent uncertainty

I Significant computational effort
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I Let ξt = (1, ξ2, . . . , ξt) be random
variables associated with stages 1 to t

I Stochastic cost dynamic from above:

q3(ξ3) = q1 − 0.2ξ2 − 0.15ξ3

I Linear decision rule at stage t:

y t(ξ
t) = Y tξ

t ,

where matrix Y t is an opt. variable

2

Linear Investment Decision Rules1

E[Y 1ξ
1]

E[Y 2ξ
2]

E[Y 3ξ
3]

time
stage 1 stage 2 stage 3

2Stanley J Garstka and Roger J-B Wets. “On decision rules in stochastic programming”. In: Mathematical Programming 7.1
(1974), pp. 117–143.
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Performance Guarantees of LDRs: Feasibility

Chance-constrained optimization of investment (Y tξt) and operating (Ptξt) linear decision rules:

min
Y t ,Pt

EPξ

[
T∑
t=1

(Qtξ
t)>Y tξ

t + (Ctξ
t)>Ptξ

t

]
Investment + operating costs

s.to. Pξt
[
Ptξ

t − Ltξ
t ∈ OPF eq.

]
> 1− εopf, ∀t OPF equations

Pξt
[
0 6 Ptξ

t 6 Σt
τ=1Y τ ξ

τ
]
> 1− εgen, ∀t Generation limits

Pξt
[
0 6 Y tξ

t 6 ymax
]
> 1− εinv, ∀t Investment limits

I Includes uncertainty of investment (Qtξt) and operating costs (Ctξt), and system load (Ltξt)
I Guarantees feasibility up to prescribed parameters εopf, εgen and εinv
I Requires uncertainty movements (mean & covariance)

Bad investment decision rules
(1− εinv = 0.5)

Y 1

E[Y 2ξ
2]

E[Y 3ξ
3]

time
stage 1 stage 2 stage 3

y t (ξt )

fea
s.

reg
.

0

ymax

Good investment decision rules
(1− εinv = 0.95)

Y 1

E[Y 2ξ
2]

E[Y 3ξ
3]

time
stage 1 stage 2 stage 3

y t (ξt )

fea
s.

reg
.

0

ymax
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Performance Guarantees of LDRs: Minimal Variability

Variance-aware optimization of linear decision rules:

min
Y t ,Pt

EPξ

[
T∑
t=1

(Qtξ
t)>Y tξ

t + (Ctξ
t)>Ptξ

t

]
Investment + operating costs

+Ψ
T∑
t=2

Var
[
Y tξ

t
]

Variability penalty

s.to. Pξt
[
Ptξ

t − Ltξ
t ∈ OPF eq.

]
> 1− εopf, ∀t OPF equations

Pξt
[
0 6 Ptξ

t 6 Σt
τ=1Y τ ξ

τ
]
> 1− εgen, ∀t Generation limits

Pξt
[
0 6 Y tξ

t 6 ymax
]
> 1− εinv, ∀t Investment limits

I Additionally penalizes the variability of investment decisions (at the expense of exp. costs)

Variability-agnostic investment rules

Y 1

E[Y 2ξ
2] E[Y 3ξ

3]

time
stage 1 stage 2 stage 3

Variability-aware investment rules

Y 1

E[Y 2ξ
2]

E[Y 3ξ
3]

time
stage 1 stage 2 stage 3
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Performance Guarantees of LDRs: Sub-optimality bound

I Restricting decisions to linear functions
incurs optimality loss w.r.t. ideal
stochastic solution

I $59 billion: investment into renewable
energy in US in 2019

I Even 1% sub-optimality gap results in
the annual loss of $590 mil.

uncertainty
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t)
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Duality-inspired global sub-optimality gap3

I Step 1: Solve primal stochastic
program in LDRs (primal gap)

I Step 2: Solve dual stochastic program
in LDRs (dual gap)

I Step 3: The difference between the two
is the global sub-optimality bound

decision
yt(ξt)

p
rim

al

d
u

al

O
D

R

Step 1

Step 2

L
D

R

Step 3

3Daniel Kuhn, Wolfram Wiesemann, and Angelos Georghiou. “Primal and dual linear decision rules in stochastic and robust
optimization”. In: Mathematical Programming 130.1 (2011), pp. 177–209.
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Numerical Demonstration: Electric Reliability Council of Texas

I 13 zones, 20 lines, 47 units

I NREL ATB technology baseline

I 5-stage planning horizon

I 24 operating conditions
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Conclusions

I Long-term power system planning is challenged by uncertainty

I Linear decision rules approximate optimal multi-stage planning under uncertainty

I Scalability (scenario-free)

I Feasibility guarantees

I Decision variability control

I Sub-optimality bounds

I How good is this approximation? ERCOT system:
I Good when the system operator has a clear understanding of future trends (sub-optimality ≈ 1%)
I Bad when the system has no idea where the system is going (sub-optimality > 12%)
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